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LETTER TO THE EDITOR 

Variation of the action in the classical time-dependent 
harmonic oscillator: an exact result 
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t Departament de Matematiques, Universitat Jaume I, 12071 CastelM, Spain 
t Departament de F i s h  Tebrica and IFIC, Universitat de Whncia, 46100 Buqassot, 
Spain 

Received 27 November 1992 

Abstract. From the exact solution of certain time-dependent classical harmonic oscillators 
in one dimension we investigate Ihe behaviour of the adiabatic invariant J ( t ) .  For a 
subclass of such potentials A J  5 J(+m) - J ( - m )  = 0 whatever the regime. We show 
that this does not necessarily imply a breakdorm of the commonly accepted asymptotic 
exponential law for A J .  

Although the classical harmonic oscillator (HO) with time-dependent frequency is a 
very old subject of study in applied mathematics and physics it continues to receive 
attention nowadays, often as a way of checking the validity of new approximation 
methods, but also to illustrate ideas or concepts. It is therefore not surprising that 
0 1 i g i ~ 1  remarks concerning the timedependent HO appear regularly in the Literature. 
The present note has been motivated by one of these recent observations [l-31. 

To be precise, in the first part of this letter we solve exactly the equation of 
motion associated to the one-dimensional timedependent Hamiltonian 

H ( i )  = :[P* + w2(et)92J (1) 

for a particular one-parameter family of analytic functions w(c i ) ,  where I /€ stands 
for the time scale of the system. It is commonly accepted that when the system evolves 
adiabatically the asymptotic variation of the variable J = H / w  is exponentially small. 
Nevertheless, for certain values of the parameter characterizing these frequencies the 
change in J ( t )  from -cm to foo exactly vanishes for any value of E. We shall discuss 
below this paradoxical phenomenon. 

For the Hamiltonian in (1) the variation with time of the variable J is a topic 
frequently discussed in the literature. As is well known, J is an adiabatic invariant 
which means that its value remains approximately constant during a time interval 
of order l / c  [4]. A slightly different question arises when considering the variation 
A J  f J(+oo) - J(-CO) over the infinite time interval (-oo,+co), instead of the 
whole history of J ( t ) .  It is tacitly supposed that the Limiting values J ( i c o )  exist, 
which is ensured provided w tends sufficiently fast to definite limits as t -+ i co .  If 
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w ( d )  is an analytical function then AJ N with k a real positive constant and 
e e: 1. It is common practice to express this result by saying that the asymptotic 
variation of the action is exponentially small. Studies on the accuracy in the 
conservation of J ( i )  when E e: 1 have been performed with different techniques, 
giving generally very elegant results 16-91. 

There are, however, potentials for which A J  = 0, irrespective of whether 
the regime is sudden or adiabatic. These cases are usually said to correspond 
to r&ctiodess potenrials [2,3] in analogy with one-dimensional quantum scattering 
problems. Here we adhere to this terminology. Of course, in the context of classical 
mechanics neither a reflected nor a transmitted wave is referred to at all. 

We are interested in understanding why the variation of the adiabatic invariant 
vanishes rather than being exponentially small, in the adiabatic regime; and moreover, 
why the above result holds in fact for any regime. In this note we prove these features 
for a family of Hamiltonians of the form given in (1). 

The particular class of frequencies we study is 

u(u - 1 ) 2  
W Z ( € t )  = 1 t 

cosh’ct 
where U > 1 is a real arbitrary parameter. 
corresponds to U = 2. 

The frequency considered in [3] 

The change of variable 

z = (1+ tanhet)/Z (3) 

transforms the equation of motion q f w2q = 0 into Riemann’s differential equation 

with (regular) singular points z = 0,1, 00. In the above expressions the dot stands 
for the time derivative while the prime represents the derivative with respect to z. 
The real solution that presents the adequate behaviour when U = 1 is given by 

q( t )  = a e - i t 2 F l ( ~ , l - u ; l - i / c ; z ) + ~ ~  (5) 
in terms of the hypergeometric function 2F,. Here Q is an arbitrary complex constant 
to be fixed by initial conditions and cc indicates the complex conjugate of the 
preceding term. Let us analyse the asymptotic behaviour of q( t ) ,  p ( t )  = cj(t). 
When z - 0 (i.e. t + --CO ), then 2F1 -+ 1 and q(t), p(t) are simply the free NO 
solutions 

q ( t )  N ae” t cc p ( t )  Y -iae-” +cc. (6) 
The free oscillation character of q ( t )  when z + 1 (i.e. t - 4-03) can be readily seen 
by taking into account the following analytic continuation IS]: 
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After some algebra we get the asymptotic form 
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q ( t )  Y a(e- i tR + e'") + cc (8) 

with 

A similar expression holds true for p ( t ) .  Consequently the solution given by (5) may 
be seen as the product of the asymptotic (oscillatory) solution times a function (p,) 
describing the finite time corrections to the former. Changes of variables other than 
(3) may lead to alternative forms of (4) [lo]. Nevertheless, the solution no longer 
necessarily admits such a factorization. 

Next we obtain an exact formula for AJ.  From (6) we have J ( - w )  = 21aI2. To 
obtain an expression for J(+m) from (8) we use the property 

r(i - .)qZ) = ? r / ~ i n ? r z  (10) 

and a straightforward calculation yields 

AJ = 4 1 a 1 2 p [ m c o s ( 2 4  t E )  +PI (11) 

where 4 = arg(a), p = Isin(na)l/sinh(n/e) and 

A special situation occurs when U takes on integer values n > 1. Then, the 
above equations give A J = 0 irrespective of the e value. This property is sometimes 
referred to as reflectionlessness, even in the context of classical mechanics [3]. 
Furthermore, for these particular frequencies the hypergeometric series in (5) reduces 
to a Jacobi polynomial [5] 

Once (13) is substituted in (5), the exact solution q ( t )  is expressed in terms of 
simple algebraic functions. We note in passing that our exact (AJ = 0) solution 
coincides with the reflectionless solution obtained via the factorization method in 
soliton theoly 1111. 

Let us now go back to the case of arbitray U and suppose that E < 1, which 
corresponds to the adiabatic regime. If U is not an integer then A J does not vanish. 
Since ~ ( € 1 )  is analytic A J  must be proportional to exp(-k/E) with k some positive 
real parameter, according to the general rule stated above. In this limiting case we 
have from (11) 

AJ=8lalZcos(24t  E)lsin(na)lexp(-a/e). (14) 

Notice that A J is indeed exponentially small for U # n and, what is more interesting, 
the vanishing of A J stems from the pre-exponential factor. The exponential rule for 
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AJ is still valid for U values neighbouring U = n but tight at this point it is the 
pre-exponential factor in the asymptotic formula that becomes the crucial piece. 

In summary, we want to stress that by exactly solving the equation of motion 
for the one-parameter family of frequencies given by (2) we have found that A J  
factorizes asymptotically as indicated by (14). The pre-exponential factor depends 
continuously on the parameter U whereas the exponential itself is a function of c 
alone. Just when U = n > 1 we have the likely correlated facts that, whatever the 
regime, q(i) is given by a combination of simple algebraic functions and that A J  = 0, 
Le. reflectionlessness. A Similar property has been observed for the structure of the 
wavefunction of some one-dimensional time-independent quantum +stems [2]. 

It would be interesting to see to what extent these conclusions are valid for other 
families of frequencies. Needless to say, this might be a poser in view of the scarcity 
of exactly solvable models. 

One of us (FC) wishes to thank Professor A J Dragt and Dr I Gjaja for stimulating 
discussions, and the University of Maryland for its hospitality. We are also indebted 
to Professor S Klarsfeld for useful remarks This work has been partially supported 
by DGICYT (Spain) under grants PB-88-0064 and AEN90-0049. 
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